Journal of Organometallic Chemistry, 184 (1980) C49-C52 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary Communication

BIS(η^{4} -2,3-DIMETHYL-1,3-BUTADIENE)NICKEL

P. W. Jolly⁺, R. Mynott and R. Salz

Max-Planck-Institut für Kohlenforschung, Lembkestr. 5 D-4330 Mülheim-Ruhr (W.-Germany) (Received November 1st, 1979)

Summary

2,3-Dimethyl-1,3-butadiene reacts with (CDT)Ni to give a bis(η^4 -diene)nickel complex in which the two diene molecules are arranged tetrahedrally around the central nickel atom.

Butadiene reacts with binary nickel(0) olefin complexes to give the C_{12} -nickel species (η^3, η^3 -dodecatrienediyl)nickel, which it is believed plays a central role in the nickelcatalyzed cyclotrimerization of butadiene to 1,5,9-cyclododecatriene (CDT) [1,2]. A related complex has been recently isolated from an analogous reaction with isoprene [2].

Attempts to extend this work by reacting 2,3-dimethyl-1,3-butadiene with (CDT)Ni led not to the expected hexamethyl- C_{12} -nickel species but instead bis (η^4 -2,3-dimethyl-1,3-butadiene)nickel (I) is formed, and as such is the first reported example of this class of nickel complex⁺.

$$(CDT)Ni + 2 / - (//)_2Ni + CDT$$

I is formed, by reaction in toluene at -15° , as red-brown platelets which decompose above ca. -10° (Found: Ni 25.1 $C_{12}H_{20}Ni$ Calcd.: Ni 26.3 %). Reaction with carbon monoxide in toluene at -78° results in the absorption of 4 moles CO/mol Ni with liberation of 2,3-dimethylbutadiene (86 % theory), while autocatalytic hydrogenation gives a quantitative yield of 2,3-dimethylbutane. Reaction with tricyclohexylphosphine in ether at -30° leads to the formation of η^1 , η^3 -tetramethyl-octadienediyl nickel tricyclohexylphosphine (II) as an orange-yellow solid. II has been previously prepared by reacting the diene with the phosphine adduct to (CDT)Ni [4].

$$(\downarrow)_{2^{Ni}} + P(C_{6}H_{11})_{3} \qquad (C_{6}H_{11})_{3}P \qquad I$$

On the basis of this chemical evidence I could be formu-

⁺ An earlier report of the preparation of bis(butadiene)nickel has been revised [3] - the isolated complex was shown to be bis(η ³-1-methylallyl)nickel.

lated as either the bis(η^4 -butadiene)nickel species Ia (reaction with the tertiary phosphine causing C-C bond formation) or as the η^3 , η^3 -octadienediyl nickel complex Ib analogous to the C₁₂-Ni species (reaction with CO or H₂ leading to C-C bond cleavage - a process for which precedence exists [5]). A ¹³Cnmr study, however, allows a clear distinction between these two possibilities and indicates that the molecule is correctly formulated as Ia in which two diene molecules are arranged tetrahedrally about a central nickel atom.

The 25.2 MHz ${}^{13}C- {}^{1}H$ -nmr spectrum (D-toluene, -40°) consists of three pairs of signals at 102.29/101.74, 61.14/48.84 and 21.80/19.37 (±0.05) ppm. A gated-decoupled spectrum indicates that the first pair is associated with the internal carbon atoms (C₂, C₃), the second with the terminal carbon atoms (C₁, C₄) and the third with the methyl groups (C₅, C₆). The value of 156 ±3 Hz for ${}^{1}J_{C_1,H}$ and ${}^{1}J_{C_4,H}$ clearly indicates that both C₁ and C₄ are sp² hybridized, thereby eliminating structure Ib in which the sp³ hybridized C-atoms would be anticipated to lead to a coupling constant of ca. 125 -130 Hz [6].

References

- B. Bogdanović, P. Heimbach, M. Kröner, G. Wilke
 E. G. Hoffmann and J. Brandt, Justus Liebigs Ann. Chem. 727, 143 (1969)
- B. Henc, P. W. Jolly, R. Salz, G. Wilke, R. Benn,
 E. G. Hoffmann, R. Mynott, G. Schroth, K. Seevogel,
 J. C. Sekutowski and C. Krüger, J. Organometal. Chem.
 in print
- 3. P. S. Skell, T. T. Havel, D. L. Williams-Smith and M. J. McGlinchey. Chem. Commun. p. 1098 (1972); P. S. Skell and M. J. McGlinchey, Angew. Chem. <u>87</u>, 215 (1975)
- 4. B. Büssemeier, Dissertation Ruhr Univ. Bochum (1973)
- P. W. Jolly, I. Tkatchenko and G. Wilke, Angew. Chem. <u>83</u>, 328 (1971); <u>ibid.</u> <u>83</u>, 329 (1971)
- 6. Values within this range have been observed for the sp³ hybridized position in, for example, bis(1,5-cyclooctadiene)nickel and η^3 -octadiendiylnickel triphenylphosphine [7]
- 7. P. W. Jolly and R. Mynott unpublished results

C52